High-Precision Contour Control by Gaussian Neural Network Controller for Industrial Articulated Robot Arm with Uncertainties
نویسندگان
چکیده
Uncertainties are the main reasons of deterioration of contour control of industrial articulated robot arm. In this paper, a high-precision contour control method was proposed to overcome some main uncertainties, such as torque saturation, system delay dynamics, interference between robot links, friction, and so on. Firstly, each considered factor of uncertainties was introduced briefly. Then proper realizable objective trajectory generation was presented to avoid torque saturation from objective trajectory. According to the model of industrial articulated robot arm, construction of Gaussian neural network controller with considering system delay dynamic, interference between robot links and friction was explained in detail. Finally, through the experiment and simulation, the effectiveness of proposed method was verified. Furthermore, based on the results, it was shown that the Gaussian neural network controller can be also adapted for the various kinds of frictions and high-speed motion of industrial articulated robot arm.
منابع مشابه
Adaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملAdaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملSaturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study
In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...
متن کاملadaptive control of two-link robot manipulator based on the feedback linearization method and the proposed neural network
This paper proposes an adaptive control method based on the feedback linearization technique and a proposed neural network, for tracking and position control of an industrial manipulator. At first, it is assumed that the dynamics of the system are known and the control signal is constructed by the feedback linearization method. Then to eliminate the effects of the uncertainties and external d...
متن کاملDesigning Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network
In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...
متن کامل